Windows 10
Python 3.7.7 @ MSC v.1916 64 bit (AMD64)
Latest build date 2020.08.07
difflib — 字符比较
目标:字符序列比较,特别是成行的文本。
difflib
模块包含用来计算字符序列间不同并进行处理的工具。它在比较文本方面十分有效,同时还包含了利用若干公共差异格式来生成报告的函数。
text1 = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat
convalis. Nam sed sem vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
tristique enim. Donec quis lectus a justo imperdiet tempus."""
text1_lines = text1.splitlines()
text2 = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat
convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Duis vulputate tristique enim. Donec quis lectus a
justo imperdiet tempus. Suspendisse eu lectus. In nunc."""
text2_lines = text2.splitlines()
比较文本体
Differ
类适用于文本行序列并产生人类可读的增量 ,或更改指令,包括各行内的差异。Differ
生成的默认输出类似于 Unix 下的 diff
命令行工具。它包括来自两个列表的原始输入值(包括公共值)和标记数据,以指示进行了哪些更改。
- 以
-
为前缀的行在第一个序列中,但不在第二个序列中。 - 以
+
为前缀的行在第二个序列中,但不在第一个序列中。 - 如果某行在各个版本之间存在增量差异,则使用前缀为
?
的额外行来突出显示新版本中的更改。 - 如果一行在各版本间没有差异,前缀则为一个空格,使其与存在差异的行对齐。
在将文本传递给 compare()
之前,将文本分解为一系列单独的行会生成比传入大字符串更可读的输出。
import difflib
d = difflib.Differ()
diff = d.compare(text1_lines, text2_lines)
print('\n'.join(diff))
Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
- pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
? +
- pharetra tortor. In nec mauris eget magna consequat
? -
+ pharetra tortor. In nec mauris eget magna consequat
- convalis. Nam sed sem vitae odio pellentesque interdum. Sed
? - --
+ convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
? +++ +++++ +
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
- tristique enim. Donec quis lectus a justo imperdiet tempus.
+ adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.
样本数据中两个文本段的开头是相同的,因此第一行打印时没有任何额外的注释。
Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
数据的第三行已更改为在修改后包含逗号的文本。 该行的两个版本都打印出来,第 5 行的额外信息显示了修改文本的列,包括添加了 ,
字符的事实。
- pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
? +
输出的下几行显示删除了额外的空间。
- pharetra tortor. In nec mauris eget magna consequat
? -
+ pharetra tortor. In nec mauris eget magna consequat
接下来,进行了更复杂的更改,替换了短语中的多个单词。
- convalis. Nam sed sem vitae odio pellentesque interdum. Sed
? - --
+ convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
? +++ +++++ +
段落中的最后一句被显著更改,因此通过删除旧版本并添加新版本来表示差异。
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
- tristique enim. Donec quis lectus a justo imperdiet tempus.
+ adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.
如果文本没有被拆分为单独的行,则输出结果如下:
diff = d.compare("abc", "cba")
print('\n'.join(diff))
+ c
+ b
a
- b
- c
ndiff()
函数产生基本相同的输出。该处理专门用于处理文本数据并消除输入中的 “噪声”。
diff = difflib.ndiff(text1_lines, text2_lines)
print('\n'.join(diff))
Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
- pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
? +
- pharetra tortor. In nec mauris eget magna consequat
? -
+ pharetra tortor. In nec mauris eget magna consequat
- convalis. Nam sed sem vitae odio pellentesque interdum. Sed
? ------
+ convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
? +++ +++++++++
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
- tristique enim. Donec quis lectus a justo imperdiet tempus.
+ adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.
其他输出格式
虽然 Differ
类展示了所有的输入行,unified diff 仅包括修改过的行和一些上下文。unified_diff()
函数产生这种输出。
import difflib
diff = difflib.unified_diff(text1_lines, text2_lines, n=0, lineterm='')
print('\n'.join(diff))
---
+++
@@ -3,3 +3,3 @@
-pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
-pharetra tortor. In nec mauris eget magna consequat
-convalis. Nam sed sem vitae odio pellentesque interdum. Sed
+pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
+pharetra tortor. In nec mauris eget magna consequat
+convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
@@ -10,2 +10,2 @@
-adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
-tristique enim. Donec quis lectus a justo imperdiet tempus.
+adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+justo imperdiet tempus. Suspendisse eu lectus. In nunc.
使用 context_diff()
产生类似的可读输出。
diff = difflib.context_diff(text1_lines, text2_lines, n=0, lineterm='')
print('\n'.join(diff))
***
---
***************
*** 3,5 ****
! pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
! pharetra tortor. In nec mauris eget magna consequat
! convalis. Nam sed sem vitae odio pellentesque interdum. Sed
--- 3,5 ----
! pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
! pharetra tortor. In nec mauris eget magna consequat
! convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
***************
*** 10,11 ****
! adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
! tristique enim. Donec quis lectus a justo imperdiet tempus.
--- 10,11 ----
! adipiscing. Duis vulputate tristique enim. Donec quis lectus a
! justo imperdiet tempus. Suspendisse eu lectus. In nunc.
垃圾数据
生成差异序列的所有函数都接受参数,以指示应忽略哪些行以及应忽略行中的哪些字符。例如,这些参数可用于跳过一个文件的两个版本中的标记或空白变化。
# 这个例子改编自 difflib.py 源码。
from difflib import SequenceMatcher
def show_results(match):
print(' a = {}'.format(match.a))
print(' b = {}'.format(match.b))
print(' size = {}'.format(match.size))
i, j, k = match
print(' A[a:a+size] = {!r}'.format(A[i:i + k]))
print(' B[b:b+size] = {!r}'.format(B[j:j + k]))
A = " abcd"
B = "abcd abcd"
print('A = {!r}'.format(A))
print('B = {!r}'.format(B))
print('\nWithout junk detection:')
s1 = SequenceMatcher(None, A, B)
match1 = s1.find_longest_match(0, len(A), 0, len(B))
show_results(match1)
print('\nTreat spaces as junk:')
s2 = SequenceMatcher(lambda x: x == " ", A, B)
match2 = s2.find_longest_match(0, len(A), 0, len(B))
show_results(match2)
A = ' abcd'
B = 'abcd abcd'
Without junk detection:
a = 0
b = 4
size = 5
A[a:a+size] = ' abcd'
B[b:b+size] = ' abcd'
Treat spaces as junk:
a = 1
b = 0
size = 4
A[a:a+size] = 'abcd'
B[b:b+size] = 'abcd'
Differ
的默认设置是不要忽略任何行或明确的字符,而是依赖于 SequenceMatcher
检测噪声的能力。ndiff()
默认忽略空白符和制表符。
比较任意类型
SequenceMatcher
类比较任意类型的两个序列,只要值是可散列的。 它使用一种算法来识别序列中最长的连续匹配块,消除了对真实数据没用的 “垃圾” 值。
函数 get_opcodes()
返回一个指令列表,用于修改第一个序列以使其与第二个序列匹配。指令被编码为五元素元组,包括一个字符串指令(「操作码」,见下表)和两对开始和停止索引到序列中(表示为 i1
,i2
,j1
,和 j2
)。
操作码 | 定义 |
---|---|
'replace' |
将 a[i1:i2] 替换为 b[j1:j2] |
'delete' |
完全移除 a[i1:i2] |
'insert' |
将 b[j1:j2] 插入到 a[i1:i1] |
'equal' |
子序列完全相等 |
import difflib
s1 = [1, 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]
print('Initial data:')
print('s1 =', s1)
print('s2 =', s2)
print('s1 == s2:', s1 == s2)
print()
matcher = difflib.SequenceMatcher(None, s1, s2)
for tag, i1, i2, j1, j2 in reversed(matcher.get_opcodes()):
if tag == 'delete':
print('Remove {} from positions [{}:{}]'.format(
s1[i1:i2], i1, i2))
print(' before =', s1)
del s1[i1:i2]
elif tag == 'equal':
print('s1[{}:{}] and s2[{}:{}] are the same'.format(
i1, i2, j1, j2))
elif tag == 'insert':
print('Insert {} from s2[{}:{}] into s1 at {}'.format(
s2[j1:j2], j1, j2, i1))
print(' before =', s1)
s1[i1:i2] = s2[j1:j2]
elif tag == 'replace':
print(('Replace {} from s1[{}:{}] '
'with {} from s2[{}:{}]').format(
s1[i1:i2], i1, i2, s2[j1:j2], j1, j2))
print(' before =', s1)
s1[i1:i2] = s2[j1:j2]
print(' after =', s1, '\n')
print('s1 == s2:', s1 == s2)
Initial data:
s1 = [1, 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]
s1 == s2: False
Replace [4] from s1[5:6] with [1] from s2[5:6]
before = [1, 2, 3, 5, 6, 4]
after = [1, 2, 3, 5, 6, 1]
s1[4:5] and s2[4:5] are the same
after = [1, 2, 3, 5, 6, 1]
Insert [4] from s2[3:4] into s1 at 4
before = [1, 2, 3, 5, 6, 1]
after = [1, 2, 3, 5, 4, 6, 1]
s1[1:4] and s2[0:3] are the same
after = [1, 2, 3, 5, 4, 6, 1]
Remove [1] from positions [0:1]
before = [1, 2, 3, 5, 4, 6, 1]
after = [2, 3, 5, 4, 6, 1]
s1 == s2: True
此示例比较两个整数列表,并使用 get_opcodes()
派生将原始列表转换为较新版本的指令。以相反的顺序修改,以便在添加和删除项目后列表索引保持准确。
SequenceMatcher
适用于自定义类以及内置类型,只要它们是可散列的。